New Hampshire Volunteer Lake Assessment Program

2002 Interim Report for Reservoir Pond Lyme

NHDES Water Division Watershed Management Bureau 6 Hazen Drive Concord, NH 03301

Observations & Recommendations

 $m W_{
m e}$ would like to encourage your monitoring group to conduct more sampling events in the future. Typically we recommend that each monitoring group sample at least three times per summer (once in June, July, and August). We understand that the number of sampling events you decide to conduct per summer will depend upon volunteer availability and your associations' water monitoring goals and funding availability. However, with a limited amount of data it is difficult to determine accurate and representative lake quality trends. Since weather patterns and activity in the watershed can change throughout the summer, and from year to year (and even from hour to hour during a rain event), it is a good idea to sample more than once or twice over the course of the season. If you are having difficulty finding volunteers to help sample, or to pick-up or drop-off equipment at one of the labs, please give the VLAP Coordinator a call and we will try to help you work out an arrangement.

If your association's sampling events this year were limited due to not having enough time to pick-up or drop-off samples at the lab in Concord, please remember the Lake Sunapee Region Lab is open at Colby Sawyer College in New London. This lab was established to serve the large number of lakes in the greater Lake Sunapee area. This lab is inspected by DES and operates under a DES approved quality assurance plan. We encourage the lake association to utilize this lab next summer for all sampling events (except for our annual visit, of course!). To find out more about the lab, and to schedule dates to pick up bottles and equipment, please call Bonnie Lewis, the lab manager, at (603) 526-3486.

After reviewing data collected from **RESERVOIR POND**, the program coordinators recommend the following actions.

FIGURE INTERPRETATION

Figure 1 and Table 1: The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water

column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the pond has been monitored through the program.

Chlorophyll-a, a pigment naturally found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a and are naturally found in lake ecosystems, the chlorophyll-a concentration found in the water gives an estimation of the concentration of algae or lake productivity. The mean (average) summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 7.02 ug/L.

Similar to the summer of 2001, the summer of 2002 was filled with many warm and sunny days and there was a lower than normal amount of rainfall during the latter-half of the summer. The combination of these factors resulted in relatively warm surface waters throughout the state. The lack of fresh water to the lakes/ponds reduced the rate of flushing which may have resulted in water stagnation. Due to these conditions, many lakes and ponds experienced increased algae growth, including filamentous green algae (the billowy clouds of green algae typically seen floating near shore), and some lakes/ponds experienced nuisance cyanobacteria (blue-green algae) blooms.

The current year data (the top graph) show that the June 2002 chlorophyll-a concentration is **much less than** the state mean.

Overall, visual inspection of the historical data trend line (the bottom graph) shows **a decreasing** in-lake chlorophyll-a trend, meaning that the concentration has **improved** since monitoring began. However, please keep in mind that this trend is based on only two years of data.

After 10 consecutive years of sample collection for the pond, we will conduct a statistical analysis of the data. This will allow us to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began.

While algae are naturally present in all lakes/ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes/ponds, phosphorus is the nutrient that algae depend upon for growth. Therefore, algal concentrations may increase when there is an increase in nonpoint sources of nutrient loading from the watershed, or in-lake sources of phosphorus loading (such as phosphorus releases from the sediments). It is important to continually educate residents about how activities within the watershed can affect phosphorus loading and lake quality.

Figure 2 and Table 3: The graphs in Figure 2 (Appendix A) show historical and current year data for pond transparency. Table 3 lists the maximum, minimum and mean transparency data for each sampling season that the pond has been monitored through the program.

Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. The mean (average) summer transparency for New Hampshire's lakes and ponds is 3.7 meters.

Two different weather related patterns occurred this past spring and summer that influenced lake quality during the summer season.

In late May and early June of 2002, numerous rainstorms occurred. Stormwater runoff associated with these rainstorms may have increased phosphorus loading, and the amount of soil particles washed into waterbodies throughout the state. Some lakes and ponds experienced lower than typical transparency readings during late May and early June.

However, similar to the 2001 sampling season, the lower than average amount of rainfall and the warmer temperatures during the latter-half of the summer resulted in a few lakes/ponds reporting their best-ever Secchi-disk readings in July and August (a time when we often observe reduced clarity due to increased algal growth)!

The current year data (the top graph) shows that the June transparency is *slightly less than* the state mean.

Overall, visual inspection of the historical data trend line (the bottom graph) shows **a stable** trend for in-lake transparency, meaning that the transparency has **remained the same** since monitoring began. Again, please keep in mind that that this trend is based on only two years of data.

After 10 consecutive years of sample collection for the pond, we will conduct a statistical analysis of the data.

Typically, high intensity rainfall causes erosion of sediments into the pond and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the pond. Guides to Best Management Practices designed to reduce, and possibly even

eliminate, nonpoint source pollutants are available from NHDES upon request.

Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amounts of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the pond has joined the program.

Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake/pond can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 11 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (upper layer) show that the June total phosphorus concentration is *greater than* the state median.

The current year data for the hypolimnion (lower layer) show that the June total phosphorus concentration is *less than* the state median.

Overall, visual inspection of the historical data trend line for the epilimnion (the top graph) and the hypolimnion (the bottom graph) shows **an increasing** total phosphorus trend, which means that the concentration has **worsened** in the epilimnion and hypolimnion since 2000.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a lake or pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands. If you would like to educate watershed residents about how they can help to reduce phosphorus loading into the pond, please contact the VLAP Coordinator.

TABLE INTERPRETATION

> Table 2: Phytoplankton

A small amount of an **unidentified species of cyanobacteria** was observed in the plankton sample this season. This species could not be identified due to the decomposed state of the sample. It is not

known if this species is harmful. Certain species of cyanobacteria, if present in large amounts, can be toxic to livestock, wildlife, pets, and humans (Refer to page 14 of the "Biological Monitoring Parameters" section of this report for a more detailed explanation). Cyanobacteria can reach nuisance levels when excessive nutrients and favorable environmental conditions occur.

As with the summer of 2001, we observed that some lakes and ponds had cyanobacteria present during the 2002 summer season, likely due to the many warm and sunny days that occurred this summer, which may have accelerated algal and bacterial growth. In addition, the lower than normal amount of rainfall during the latter half of the summer, meant that the slow flushing rates resulted in less phosphorus exiting the pond outlet and more phosphorus being available for plankton growth.

The presence of cyanobacteria serves as a reminder of the pond's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading into the pond by eliminating fertilizer use on lawns, keeping the pond shoreline natural, revegetating cleared areas within the watershed, and properly maintaining septic systems and roads.

In addition, residents should also observe the pond in September and October during the time of fall turnover (lake mixing) to document any blooms that may occur. Cyanobacteria have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into "surface scums" that accumulate in one section of the pond. If a fall bloom occurs, please contact the VLAP Coordinator.

> Table 4: pH

Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 5.5 severely limits the growth and reproduction of fish. A pH between 6.5 and 7.0 is ideal for fish. The mean pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is 6.5, which indicates that the surface waters in state are slightly acidic. For a more detailed explanation regarding pH, please refer to page 16 of the "Chemical Monitoring Parameters" section of this report.

Due to the presence of granite bedrock in the state and the deposition of acid rain, there is not much that can be done to effectively increase lake/pond pH.

> Table 5: Acid Neutralizing Capacity

Table 5 in Appendix B presents the current year and historic epilimnetic ANC for each year the pond has been monitored through VLAP.

Buffering capacity or ANC describes the ability of a solution to resist changes in pH by neutralizing the acidic input to the pond. For a more detailed explanation, please refer to page 16 of the "Chemical Monitoring Parameters" section of this report.

> Table 6: Conductivity

Table 6 in Appendix B presents the current and historic conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current. For a more detailed explanation, please refer to page 16 of the "Chemical Monitoring Parameters" section of this report.

> Table 8: Total Phosphorus

Table 8 in Appendix B presents the current year and historic total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to page 17 of the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

> Table 9 and 10: Dissolved Oxygen and Temperature Profile Data

Table 9 in Appendix B shows the dissolved oxygen/temperature profile(s) for the 2002 sampling season. Table 10 in Appendix B shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The dissolved oxygen concentration was **high** at the deep spot of the pond. As stratified lakes/ponds age, oxygen becomes **depleted** in the hypolimnion (the lower layer) by the process of decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from the process of biological breakdown of organic matter (i.e.; biological organisms use oxygen to break down organic matter), both in the water column and particularly at the bottom of the lake/pond where the water meets the sediment. When oxygen levels are

depleted to less than 1 mg/L in the hypolimnion the phosphorus that is normally bound up in the sediment may be re-released into the water column. The high concentration of oxygen in the hypolimnion is a sign of the pond's overall good health.

> Table 11: Turbidity

Table 11 in Appendix B lists the current year and historic data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to page 19 of the "Other Monitoring Parameters" section of this report for a more detailed explanation.

OTHER COMMENTS

➤ It is important to remember that your pond has only been a part of VLAP for two years. The data and observed trends are only based upon a limited amount of sampling events, and these trends may change as time progresses. We hope your pond will continue to sample and participate in VLAP for years to come!

Notes

➤ **Biologist's Note (6/11/02):** It rained lightly during sampling.

USEFUL RESOURCES

Changes to the Comprehensive Shoreland Protection Act: 2001 Legislative Session, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/sp/sp-8.htm

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/wmb/wmb-10.htm

The Lake Pocket Book. Prepared by The Terrene Institute, 2000. (internet: www.terrene.org, phone 800-726-4853)

Managing Lakes and Reservoirs, Third Edition, 2001. Prepared by the North American Lake Management Society (NALMS) and the Terrene Institute in cooperation with the U.S. Environmental Protection Agency. Copies are available from NALMS (internet: www.nalms.org, phone 608-233-2836), and the Terrene Institute (internet: www.terrene.org, phone 800-726-4853)

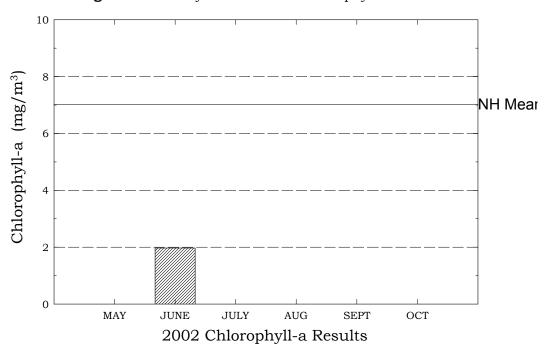
Organizing Lake Users: A Practical Guide. Written by Gretchen Flock, Judith Taggart, and Harvey Olem. Copies are available form the Terrene Institute (internet: www.terrene.org, phone 800-726-4853)

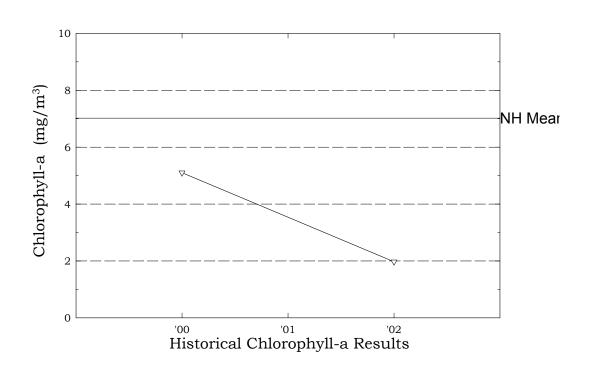
Proper Lawn Care in the Protected Shoreland: The Comprehensive Shoreland Protection Act, WD-SP-2, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-2.htm

Sand Dumping - Beach Construction, WD-BB-15, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-15.htm

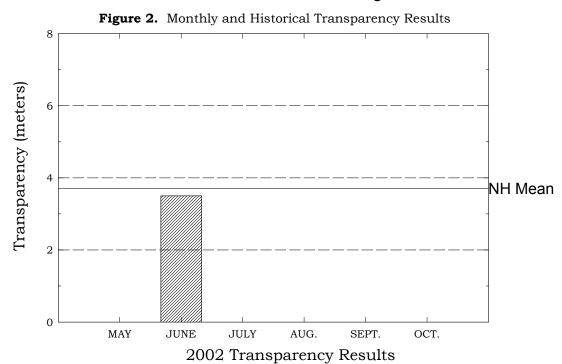
Swimmers Itch, WD-BB-2, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-2.htm

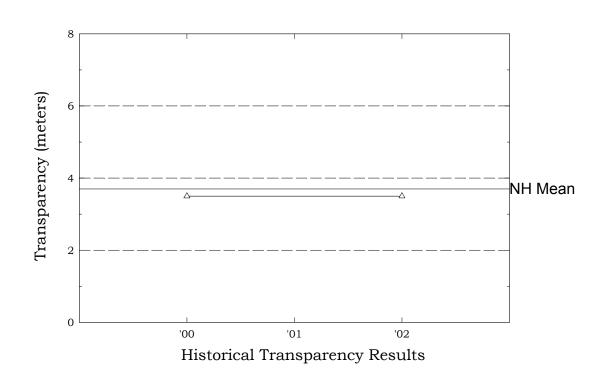
Use of Lakes or Streams for Domestic Water Supply, WD-WSEB-1-11, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/ws/ws-1-11.htm


Water Milfoil, WD-BB-1, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-1.htm


Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, WD-BB-4, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-4.htm

Appendix A: Graphs


Reservoir Pond, Lyme


Figure 1. Monthly and Historical Chlorophyll-a Results

Reservoir Pond, Lyme

Reservoir Pond, Lyme Figure 3. Monthly and Historical Total Phosphorus Data. 30 2002 Monthly Results 24 24 12 Median 18 Total Phosphorus Concentration (ug/L) 12 Median 6 0 '00 '01 '02 Epilimnion (Upper Water Layer) 30 2002 Monthly Results 24 24 Median 12 18 Median 12 6 0 '00 '01 '02

Hypolimnion (Lower Water Layer)